Optimization of traction force microscopy for micron-sized focal adhesions.
نویسندگان
چکیده
To understand how adherent cells regulate traction forces on their surrounding extracellular matrix (ECM), quantitative techniques are needed to measure forces at the cell-ECM interface. Microcontact printing is used to create a substrate of 1 μm diameter circles of ECM ligand to experimentally study the reconstruction of traction stresses at constrained, point-like focal adhesions. Traction reconstruction with point forces (TRPF) and Fourier transform traction cytometry (FTTC) are used to calculate the traction forces and stress field, respectively, at isolated adhesions. We find that the stress field calculated with FTTC peaks near the center of individual adhesions but propagates several microns beyond the adhesion location. We find the optimal set of FTTC parameters that yield the highest stress magnitude, minimizing information lost from over-smoothing and sampling of the displacement or stress field. A positive correlation between the TRPF and FTTC measurements exists, but integrating the FTTC stress field over the adhesion area yields only a small fraction of the force calculated by TRPF. An effective area similar to that defined by the width of the stress distribution measured with FTTC is required to reconcile these measurements. These measurements set bounds on the spatial resolution and precision of FTTC measurements on micron-sized adhesions.
منابع مشابه
Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery
Cell motility is a cornerstone of embryogenesis, tissue remodeling and repair, and cancer cell invasion. It is generally thought that migrating cells grab and exert traction force onto the extracellular matrix in order to pull the cell body forward. While previous studies have shown that myosin II deficient cells migrate efficiently, whether these cells exert traction forces during cell migrati...
متن کاملMultidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.
Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force...
متن کاملHigh-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking
The accurate determination of cellular forces using Traction Force Microscopy at increasingly small focal attachments to the extracellular environment presents an important yet substantial technical challenge. In these measurements, uncertainty regarding accuracy is prominent since experimental calibration frameworks at this size scale are fraught with errors - denying a gold standard against w...
متن کاملCellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour
Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellula...
متن کاملTraction stress in focal adhesions correlates biphasically with actin retrograde flow speed
How focal adhesions (FAs) convert retrograde filamentous actin (F-actin) flow into traction stress on the extracellular matrix to drive cell migration is unknown. Using combined traction force and fluorescent speckle microscopy, we observed a robust biphasic relationship between F-actin speed and traction force. F-actin speed is inversely related to traction stress near the cell edge where FAs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2010